Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1

نویسندگان

  • DAVID SANDWELL
  • EMMANUEL GARCIA
چکیده

M than 60% of the Earth’s land and shallow marine areas are covered by > 2 km of sediments and sedimentary rocks, with the thickest accumulations on rifted continental margins (Figure 1). Free-air marine gravity anomalies derived from Geosat and ERS-1 satellite altimetry (Fairhead et al., 2001; Sandwell and Smith, 2009; Andersen et al., 2009) outline most of these major basins with remarkable precision. Moreover, gravity and bathymetry data derived from altimetry are used to identify current and paleo-submarine canyons, faults, and local recent uplifts. These geomorphic features provide clues to where to look for large deposits of sediments. While current altimeter data delineate large offshore basins and major structures, they do not resolve some of the smaller geomorphic features and basins (Yale et al., 1998; Fairhead et al., 2001). Improved accuracy and resolution is desirable: to facilitate comparisons between continental margins; as an exploration tool and to permit extrapolation of known structures from well-surveyed areas; to follow fracture zones out of the deep-ocean basin into antecedent continental structures, to define and compare segmentation of margins along strike and identify the position of the continent-ocean boundary; and to study mass anomalies (e.g., sediment type and distribution) and isostatic compensation at continental margins. In this article, we assess the accuracy of a new global marine gravity model based on a wealth of new radar altimetry data and demonstrate that these gravity data are superior in quality to the majority of publicly available academic and government ship gravity data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retracking CryoSat-2, Envisat and Jason-1 radar altimetry waveforms for improved gravity field recovery

S U M M A R Y Improving the accuracy of the marine gravity field requires both improved altimeter range precision and dense track coverage. After a hiatus of more than 15 yr, a wealth of suitable data is now available from the CryoSat-2, Envisat and Jason-1 satellites. The range precision of these data is significantly improved with respect to the conventional techniques used in operational oce...

متن کامل

Marine geophysics. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure.

Gravity models are powerful tools for mapping tectonic structures, especially in the deep ocean basins where the topography remains unmapped by ships or is buried by thick sediment. We combined new radar altimeter measurements from satellites CryoSat-2 and Jason-1 with existing data to construct a global marine gravity model that is two times more accurate than previous models. We found an exti...

متن کامل

Significant improvements in marine gravity from ongoing satellite missions

Incorporating new altimeter data from CryoSat-2 (30 months), Envisat (18 months), and Jason-1 (7 months) satellites into an updated marine gravity field yields significant reduction in noise and improved resolution. Compared to an older gravity field that did not include the new altimeter data, incoherent power is reduced globally by approximately 2.9 dB at 15 km, 1.6 dB at 20 km, and 1.0 dB at...

متن کامل

Location Accuracy of INS/Gravity-Integrated Navigation System on the Basis of Ocean Experiment and Simulation

An experiment comparing the location accuracy of gravity matching-aided navigation in the ocean and simulation is very important to evaluate the feasibility and the performance of an INS/gravity-integrated navigation system (IGNS) in underwater navigation. Based on a 1' × 1' marine gravity anomaly reference map and multi-model adaptive Kalman filtering algorithm, a matching location experiment ...

متن کامل

Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate

[1] Three approaches are used to reduce the error in the satellite-derived marine gravity anomalies. First, we have retracked the raw waveforms from the ERS-1 and Geosat/GM missions resulting in improvements in range precision of 40% and 27%, respectively. Second, we have used the recently published EGM2008 global gravity model as a reference field to provide a seamless gravity transition from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013